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A multi-layer model is used to describe a ‘two-dimensional ’ continuously strati- 
fied fluid. We use a momentum theorem in each layer to derive an ordinary 
differential equation describing the vertical structure behind a jump. This 
equation is compared with the corresponding equation for continuous flow. As 
one would expect from the classical one-layer theory, they are identical up to 
second order for weak disturbances. The energy change across a jump is also 
derived. By requiring that energy be lost through a jump, we calculate when 
a weak jump is possible in general. Algorithms for computing jumps of arbitrary 
strength are given. To ensure that the flow after the jump is stable and also for 
a numerical reason to be stated in § 8, we require that the Richardson number 
after the jump be equal to or greater than 4. Numerical examples are given to  
show the range of parameters within which jumps are possible; the velocity 
profiles related to different kinds of jumps also appear. Since hydraulic jumps 
in a continuously stratified fluid have not yet been observed in any laboratory, 
it should be of interest to verify these calculations experimentally. 

1. Introduction 
We approximate two-dimensional flows with continuous density stratification 

and velocity shear by n layers of incompressible inviscid fluid. Each is charac- 
terized by a velocity, a thickness and a density. The first two quantities vary 
along streamlines while the last remains constant because of the assumption of 
incompressibility. We shall also assume hydrostatic balance. Therefore, when 
n = 1, we have the classical theory of a hydraulic jump in a single layer of homo- 
geneous fluid. This theory was extended to two-layer fluid systems by Yih & 
Guha (1955), Houghton & Isaacson (1970), Long (1972) and Mehrotra & Kelly 
(1973). Their results are applicable to two-fluid systems with a discontinuous 
stratification and velocity profile. The idea of approximating a continuous 
stratification and shear by a sufficiently large number of layers of homogeneous 
fluid was first advanced by Benton (1953) for the calculation of the speed of 
linear long gravity waves. He proved for a certain class of base flows that the 
speeds obtained by his multi-layer formulation in the limit of zero thickness of 
each layer reduced to the solution of the differential equation derived for con- 
tinuous stratification and shear by Long (1953). To justify a multi-layer descrip- 
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tion of nonlinear flows, we demonstrate in the following section that in the case 
of jump-free flows the multi-layer equations reduce to the differential equation of 
Long in the limit of zero thickness. The numerical solution in a forthcoming paper 
by Lee & Su (1976) has also given us some confidence in the multi-layer description. 
In  case of hydraulic jumps in a continuous stratification and shear, we start with 
an n-layer formulation, basically an extension of the two-layer model used by 
Yih & Guha (1955) and Houghton & Isaacson (1970). We work out the analytical 
properties of a weak jump, which turn out to be what one would expect from the 
classical theory of jumps. For example, the energy loss is of third order in the 
strength of the jump; infinitesimal jumps propagate with the speeds of linear 
gravity waves: in the neighbourhood of each of these speeds, finite but weak 
jumps are possible only if they propagate at supercritical speeds. We also derive 
in the limit of zero thickness a differential equation for the jump from the jump 
conditions in the n-layer formulation. This differential equation is compared 
with the corresponding differential equation for jump-free flows. In  the limit of 
small disturbances, these two equations are identical up to second order. This is 
consistent with the finding that the energy loss in a weak jump is a third-order 
quantity. 

Within the n-layer formulation, the governing equation becomes a system of 
n nonlinear algebraic equations. These may be viewed as the finite-element 
approximation. We devise a computational algorithm to solve these equations 
efficiently. A similar algorithm is used in Lee & Su to compute jump-free flows 
where n can be as large as 1000 with the computing time still relativelyvery short. 
In  the jump problem, the computation is complicated by a branching process 
tied to the non-uniqueness of the conjugate state behind a jump. For n = 2 the 
non-uniqueness of the solution was first pointed out by Yih & Guha (1955). They 
circumvented the problem by requiring that the velocities after the jump in the 
two layers be identical. The problem was subsequently investigated by Long 
(1972), who suggested resolving it by experiment; Mehrotra & Kelly (1973) 
suggested taking only the solution which approaches an infinitesimally weak 
jump in the limit when the conditions upstream of the jump tend to the critical 
state. For large n, we found a large set of solutions. Most of these have extremely 
irregular velocity profiles even though we used a sufficient number of layers to 
represent the upstream velocity and density reasonably well. These irregular 
solutions are likely to be unstable owing to the very large shear, and the jump 
will become turbulent. Since the multi-layer formulation is questionable for 
describing turbulent mixing (among layers), we exclude all irregular solutions 
by requiring the Richardson number behind the jump to be greater than a certain 
value. Since the necessary condition for shear stability is not yet available, we 
take Miles’ (1961) sufficient condition; i.e. the local Richardson number behind 
the jump is required to be greater than a. We have also tried different values of 
the Richardson number. As it decreases the number of possible jump solutions 
increases rapidly with n. In  the data presented in the last section, when the 
upstream velocity is taken as uniform and the density as an exponentially 
decreasing function of height, we have used both 4 and Q for the limiting Richard- 
son number; the solution is found to be unique : the same in both cases. It is seen 
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that the velocity profiles behind the jump in all the cases presented are very 
smooth. We have also found the range of a modified Froude number within which 
internal jumps (jumps which occur for a Froude number near those for internal 
gravity wave modes) are possible. However, external jumps are always possible 
under the free-surface condition provided that the Froude number ahead of the 
jump is greater than the critical Eroude number of the surface wave. The interval 
wherein internal jumps are possible becomes smaller as one goes to higher modes. 
However for a given mode this range increases as the stratification increases. 
This is consistent with the expectation that it should shrink to zero as the 
stratification goes to zero. 

The arrangement of the paper is clear from the title of each section. In  the 
remainder of this section, we introduce the two basic equations in each layer. 
Under the assumptions made a t  the beginning of the section, and taking the 
vertical ( z )  axis to be the direction of the stratification and shear, we write the 
continuity equation and Bernoulli’s theorem in each layer as 

ahi/at + a(hiui)/ax = 0, 

aq&/at + *(v$i)2 + gz +p/pi = 0 

(1) 

(2) 

for i = 1,2,  ..., n. We have denoted the horizontal velocity by ui, the velocity 
potential by $i and the thickness of the layer by hi(x,t). We suppose that the 
entire fluid is divided into n layers in the z direction, and shall denote the layer 
immediately above the ground by i = 1 and the top layer by i = n. 

2. A digression on continuous flows 
Before investigating discontinuous flows (jumps) in a stratified fluid, we make 

a short digression on continuous flows to demonstrate the utility of the multi-layer 
description of a stratified fluid. We suppose that the flow is steady. Hence in the 
ith layer we have for the equation of continuity 

ui = UiHi/hc, (3) 

where we denote the values of ui and hi far upstream by L$ and Hi. 

we obtain 
Applying the Bernoulli equation (2) in integrated form at the ith interface 

Pi+l[i(U:+l + ~ : + 1 )  +~z i I -~ i [ i (u :  +wt) +gziI = Pi+l[iu:+l +gZiI -~i[iu:+~ziI, 
where zi and Zi are the elevations of the ith interface at x and far upstream. 
Setting pi+l = pi + Api, ui+l = ui + Aui and wi = ui dz,ldx + O(hi), we obtain 

A-U: (: [ I +  (:2)2] - -$ U:)+gApi(zi-Zi) = 0. (4) 

Dividing the above equation by Hi, substituting for ui from (3) and taking the 
limit Hi = AZi+O, we obtain an equation due to Dubreil-Jacotin (1937) and 
Long (1953): 

a 9 dP Zzz + Z,, + +(Z; + 2; - 1) - (In pU2)  + - - (z - 2) = 0. 
dZ pU2dZ (5) 

3-2 
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For the purpose of comparison with the discontinuous flows later, we derive 
from ( 5 )  under the hydrostatic assumption, i.e. deletion of x derivatives, the 
following equation for [ = z - 2 with the upstream elevation 2 as the independent 
variable : 

d pU2 dP - g 5 = 0. - dZ (- 2 [ 1 - (1 + 2) 
This can also be obtained directly from (4) by dropping (dz/dx)2,  dividing through 
by AZ and taking the limit AZ+O. The boundary conditions for steady flow 
over a barrier of profile C0(x) are as follows: 

[ =  C0(x) at 2 = 0, 1 
5 = 0 for a rigid top surface (7) 1 at  2 = H . )  

Pressure = constant for a free top surface 

For flow problems in the real atmosphere H+m. Neither a free nor a rigid 
surface as stipulated above is appropriate. In  the linear approximation, it is 
known that the proper boundary condition at the top is a radiation condition 
(Eliassen & Palm 1961; Drazin & Su 1975). Since the corresponding condition 
for nonlinear problems has not yet been formulated, we shall restrict our subse- 
quent investigation to the boundary conditions specified by (7). 

Equation (6) with the boundary conditions (7) specifies a two-point boundary- 
value problem. However, by using the multi-layer description, it can be shown 
that the problem can be dealt with as a one-point initial-value problem. The 
numerical integration for continuous flows over a barrier is described in detail 
by Lee & Su (1976). 

3. Discontinuous flows 
We assume hydrostatic balance. Hence we neglect wi compared with ui in (2), 

which is then applied a t  the ith interface for fluid above and below to eliminate 
the pressure term. After some manipulation, we obtain 

for i = 1 , 2, . . . , n, where ps  is the surface pressure at the top of the fluid and ho 
denotes the ground elevation. In  the subsequent analysis of jumps we shall 
consider a flat ground surface, i.e. h, = 0.  We then derive from (8) in conjunction 
with (1) the following momentum equations:? 

8% 
p i j h , 2 + h i -  ax = 0, i = 1, ..., n, (9) 

where we use 

I {P,,Pi, j > i, 
p . .  = 1, j < i, 

t These equations can also be obtained directly from momentum conservation for 
a stream tube between x and x + dx. 
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and the prime on the summation sign indicates omission of the term with j = i. 
In discussing hydraulic jumps, we need to consider the total energy of the entire 
fluid. It can be shown from (1) and (8) that 

where 

We can now write down the equations governing jumps and the total energy 
change across a jump. Denoting the flow variables upstream and downstream of 
a jump by upper- and lower-case letters, we obtain from the time-independent 
form of (1) and (9) U, Hi = ui hi, (13) 

Since (9), the last two terms of which represent exchange of momentum between 
layers, is not in the form of a conservation law, we write down its last two terms 
across the jump by taking the mean value of hi. Physically, this is equivalent to 
taking the mean hydraulic head over the jump section as suggested by Yih & 
Guha (1955). This was also done and briefly discussed by Houghton & Isaacson 
(1970). 

Eliminating ui from (13) and (14) and defining ti = hi/H, - 1, we obtain the 
jump equations 

where F: = U:/gHi is the Froude number for the ith layer. From (15), it  is easy 
to derive in the limit as Hi -+ 0 the differential equation of a jump as 

where < has the same meaning as in (6). 
To second order in f;, (16) is the same as (6), which was derived for continuous 

and energy-conserving flows. Therefore weak jumps are approximately energy 
conserving. In  fact, we shall presently calculate the energy change over a jump 
and show that for a weak jump the energy loss is of third order in f; as one would 
expect from the classical theory of jumps in a homogeneous fluid. 

4. Energy loss over a jump 
The term on the right-hand side of (1 1) vanishes both for a free upper boundary, 

for which ps = 0, and for a rigid surface, for which 

a n  

ati,, 
- C. h, = 0 .  
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Therefore it may be seen that the total energy change across a jump is given by 
the difference in the fluxes of energy F across the jump. Using (13) and (14) in 
( 1 2 b ) ,  we obtain 

(17) 
i n  

AE = Fd-Fu = - C piHiUzfi(&), 
2 i=l 

where 

and the subscripts d and u indicate downstream and upstream values respectively. 
We list some obvious properties off(6) for - I < < C O : ~  

(i) f'($) = - 212(3 -t- -%)/(I + $)3 ( 2  + 6)z < 0, 
(ii) f(t) - - B F  as f;+O, 
(iii) f(6) 0 for cz  0. 

Property (ii) verifies our statement about the energy loss in a weak jump. Also, 
it may be seen from property (iii) that A E  > 0 if & < 0 for all i. In  other words, 
a jump wherein every layer accelerates is energetically impossible. 

The limit of the loss of energy through a jump as expressed by (17) for the case 
of a continuously stratified flow can also be found. Taking 2 as the upstream 
vertical co-ordinate, we can write the sum in (17) as an integral as follows: 

- - ~ ~ o z h p d Z p ( Z ) U 3 ( Z )  (2)3 for weak jumps. 

5. Waves of infinitesimal amplitude 

and obtains 
To study waves of infinitesimal amplitude, one linearizes either 

Cn = 0 at Z = 0, 

a t Z = H ,  
Cn = 0 for a rigid surface 

(U + Cn)2 dCn/dZ - g<, = 0 for a free surface 

where we have replaced u by U + Cn. C, denotes an eigenvalue for which the 
homogeneous system (20) has a non-trivial solution I&. We shall assume that for 
all p and U studied there exists a real discrete set of C,. 

The linear problem can also be formulated in terms of discrete layers expressed 
by (15). By neglecting all but linear terms in (15), we obtain the following homo- 
geneous linear equations for the &. 

(i) For a free surface: 

t 6 = - 1 corresponds to k = 0 and -+ co. 
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where we define F: = (C$ + C,)2/gH,. The eigenvalue C, is obtained by requiring 
the determinant of the coefficient matrix in (21) to vanish. This has been done 
by Benton (1 954). 

(ii) For a rigid surface: 

The values of C, obtained above, except for the largest one in the free-surface 
case, which describes the surface wave, give the speeds of internal waves of 
infinitesimal amplitude. 

6. Weak jumps 
Assuming the existence of a discrete set of C, as above, we can show that weak 

jumps are possible energetically for an upstream velocity U + C provided that 
C - C, 2 0 in a small neighbourhood of each C,. Taking the weak-jump solution 
as 5 = A{,, it can be shown from the weaklynonlinear theory of Benjamin (1966; 
see also Drazin, Lee & Su 1974) that the strength of the jump, denoted by A,  
is related to C-C, by 

where C denotes the speed of a jump moving into fluid with velocity 77. U + 0 
then is the speed of fluid moving into a stationary jump. In  (23), 

A = (4J/3K) (C-C,), (23) 

Now the expression for the energy change through a jump in (196) can be 
simplified if U = constant, i.e. 

(C - (33. u+c 16( U + c )  J3 AE = --A3K = - 
4 27K2 124) 

Thus in the neighbourhood of each C,, a weak jump is energetically possible for 
supercritical flows and impossible for subcritical flows, provided that the velocity 
upstream of the jump is uniform. Below we shall locate for a certain density 
stratification the exact range of C wherein jumps are possible. 

7. Algorithms for computing jumps 
Free surface (or with a passive layer extending to Z-FCO) 

We assume the fluid to be divided into n layers. On top of the nth layer, we 
suppose that there is a passive layer with constant density and velocity 
and u,+~. Without loss of generality, the latter is taken to be zero. A passive layer 
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is frequently used in the meteorological literature and is a generalization of a free 
surface where pn+l = 0. From the laws of hydrostatics, it  is easy to show that 

n 

j-1 
P ~ - G  = -gPn+l(zn-Zn) = -gpn+l 2 (hj-Hj)* (25) 

With this p8, the right side of the energy equation (11) can be written as a time 
derivative and included in the term aE/at. The energy loss through a jump given 
in (1 7) remains valid. Substituting the above expression in (15) and subtracting 
the two equations obtained from the latter with free indices i and i + 1, we have 

a(&) = (1 -Pn+l/Pi) (1 -Pn+l/Pi+l)-l u?+l ui2 a(&+l) 

for i = 1,2,  .. ., n - 1, where 
4 6 )  = 2!g(1+ 5) (2 + E ) .  

For i = n, we obtain from (15) and (25) 

The algorithm for computing all the ti satisfying (26)-(28) is as follows. First 
pick a Cn in - 1 < En < a~ (tn < 1 is excluded since it gives negative velocities), 
then compute &-l, successively by letting i in (26) vary through the 
sequence n - 1, n - 2, . . ., 1. In  this way Df in (28) can be taken as a function of Cn 
only. The zeros of Df with the corresponding set of ti's represent the solutions 
for the jumps. 

Rigid surface 
A similar algorithm is obtained for a rigid top. Here we have as an upper boundary 
condition 

. . . , 

n 

D, = (h i -Hj)  = 5 Hi&. = 0. 
j=1 j=1 

Eliminating the pressures in (1 5) we obtain 

for i = 1,2,  .-., n - 1. To compute the jump, we proceed exactly as for a free 
surface, but use (30) instead of (26), and (29) instead of (28). 

8. Limit of zero stratification 
For zero density stratification and Z& = constant, both algorithms presented 

above, i.e. (26) and (30), are extremely simple and reduce to a(&) = a(&+,) or 
a(&) = a(C2) = . . . = a(<,). Depending on the value of cn we have the following 
two cases. 

(i) - 1  < tn < 0: no jump. It is easy to see from (27) that in this case 
-a < a(&) <: 0. Since [ has a single value for each a in this range, we have 
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5% = 6, for i = 1,2, . . ., n - I. Since all the & are negative, the energy increases 
through the jump, which is impossible. 

(ii) cIt 2 0, i.e. 0 < a, < 2 ( l -  24)2. For any [, in this range, there are two 
possible &‘s: 

(31) 1 5% = {s* It = a;1-a8_ 2 [( a,l-a - 2)  2- 214 

[, = a;l-g+[(a-q)2-2]+, It 

where for definiteness we use the positive sign in front of the square-root sign 
to define f,, which is the ‘rational conjugate’ of ,$: as given in (31). Since all the 
& are positive, this is energetically favourable. For a rigid surface, we see that 
these positive ti’s fail to satisfy (29). Thus there is no jump, as one would expect 
for a rigid surface. However, it is not difficult to show that in the case of a free 
surface Dfin (28) can be made to vanish in many different ways. All the solutions 
for a given value of U21qH are discontinuous except the one which has a constant 
velocity profile. It can be shown that this continuous solution has the greatest 
energy loss across the jump among all the possible solutions for a given Froude 
number U21gH. 

This non-uniqueness, stemming from the two possible solutions for E for 
agiven value of a, is a characteristic of (26) and (30) for general upstream density 
and velocity profiles. As it is, the algorithm in the previous section may produce 
a highly discontinuous downstream velocity profile and it could become worse 
the thinner one makes the layer. To render the problem unique, or to avoid 
discontinuities in the velocity profile behind a jump, it is proposed in the present 
calculation that the Richardson number, defined as 

be greater than a certain positive number. Guided by stability considerations 
(Miles 1961), we shall take Ri > $. This eliminates avery large number of branches 
in the algorithm of (26) and (30) and thus greatly facilitates the computation. 
Of course, we pay for this convenience by losing possible hydraulic jumps other 
than those calculated in the next section. However, those jumps for which the 
Richardson number is less than $ are likely to be unstable and thus have to be 
treated with proper turbulent mixing. From the mathematical point of viev the 
introduction of the Richardson number here is a way of obtaining a smooth 
solution. We have used only two lower bounds on Bi (i and 4) for all the 
numerical examples. For such close bounds on Ri the results are identical, i.e. 
there is no solution for Ri > & apart from that for Ri > 4. 

9. Numerical examples 
We consider exponential density stratification and uniform velocity upstream 

of the jump. In  this case the linear problem (20) can be solved explicitly. We 
obtain the eigenvalues governed by 

1H tan (ZH) = ,8H (free surface) 

Or 1H = nn, n = 1,2, ... (rigid surface), 
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Upper 
boundary 

BH condition 

Free surface 

Rigid top 
0.1686 { 

Free surface 

Rigid top 
1.686 

Mode number 
r 

0 
IHL = 0 
1HU = 0.3994 

IHL = 0 
IHu = 1.0247 

i 

1 2 3 

IHL = 3.1890 IHL = 6.3088 EHL = 9.4426 
IHv = 3.1943 1Hv = 6.3099 1Hu = 9.4426 
~ H L  = 3.1410 IHL = 6.28318 IHL = 9.4246 
IHcr = 7~ ZHv = 2~ IHu = 3n 
IHL = 3.2916 ~ H L  = 6.4024 IHL = 9.5506 
IHu = 3.5815 1Hr~ = 6.5356 IHu = 9.5987 
IHL = 3.0962 ZHL = 6.2821 IHL = 9.4229 
IHU = n lHU = 2~ IHv = 371 

TABLE 1. Ranges of values of 1H for jumps (possible for ZHL < IH < ZHv). Note that 
the values of ZHu are critical states in the sense of linear theory. 

where 

ui 
FIGURE 1. Velocity profile for /3H = 0.1686, ZH = 0,2674. 

and H is the total thickness of the fluid. 
It can be shown with a proper non-dimensionalization that the nonlinear 

jump problem is characterized in the present case by the two non-dimensional 
parameters PH and ZH. In  our computation, we use the algorithms developed 
in Q 7, take two values of PH and find the range of values of IH wherein a jump is 
possible energetically as in table 1. In  this table, we denote surface waves by the 



Hydrautic jumps in an incompressible stratijed Jluid 

1.2 ,," ) 1 1 1 1 1 1 , 1 1 , , 1 1 1 1 (  1 1 1 1  1 1 , 1  

I I- 

43 

FIUURES 2 (a, b).  For legend see next page. 



44 C. H. Su 

FIUURE 
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2. Velocity profiles for free surface. (a) PH = 1.686, ZH = 3.2916; (b )  
ZH = 6.4024; ( 0 )  PH = 1.686, ZH = 9.5506. 

1 .oo 

0.90 

0.80 

0.70 

0.60 

D 0.50 

0.40 
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PH = 1.686, 
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/ -I 

-I 

D 

0.90 

u, 
(4 

FIUURE 3. Velocity profiles for rigid surfme. (a) /3H = 1.686, ZH = 3.0962; 
(b )  /3H = 1.688, IH = 6.2820; (c) /3H = 1.686, IH = 9.44229. 
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zeroth mode and internal waves by the first, second or third mode. We see that an 
external jump is possible if ZH is less than a certain critical value. Put another 
way, the Froude number P / g H  must be greater than a certain critical value to 
have an external jump as is the case for classical hydraulic jumps in homogeneous 
fluids. A typical velocity profile behind such a jump is presented in figure 1, 
where both the depth and the velocity are normalized by their upstream value. 
It may be seen that the particles near the surface decelerate more than those 
near the bottom. This is true for all the cases we have calculated for a free surface. 
For a rigid surface the opposite is true. 

From table 1 it may be seen that the bands of values of ZH wherein an internal 
jump is possible are quite narrow. This may explain why an internal hydraulic 
jump has not yet been observed experimentally in a continuously stratified fluid 
(Yih 1965, p. 130). In  figure 2 we show the velocity profile after a jump for a free 
surface in the neighbourhood of the first and second modes. In  figure 3 we show 
the velocity profile around the first, second and third modes in the case of a rigid 
surface. These diagrams were produced by a standard NCAR graphics routine. 
In  most cases, the variation in velocity is greatly exaggerated. In  the computation 
we found that the number of layers sufficient to approximate a continuous strati- 
fication increases with the value of ZH. This seems to be a reasonable trend in 
view of more complicated structure of the velocity profile for higher values of JH. 
In our experiment we used 600-1000 layers. Even though the number of layers 
used was large, the computational time involved was still very short because of 
the simple algorithms as shown in 3 4. 

In  conclusion we point out that jumps associated with the zeroth mode are 
always possible, while internal jumps occur only in narrow intervals on the ZH 
scale. The width of these intervals increases as the stratification of the fluid 
increases. For the second PH we used above, it seems that these intervals are 
sufficiently wide to permit experimental verification. 

The author wishes to thank Margaret A. Drake and Astrik Deirmendjian for 
coding and executing the computer program for the calculation of hydraulic 
jumps. The work was done a t  the Advanced Study Program of the National Center 
for Atmospheric Research while the author was on sabbatical leave from Brown 
University. 
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